
11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 1 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

Chapter 10 -- Pentium Architecture
It is time to stop programming in SASM, and get to the real stuff:
  Pentium assembly language.

Notes ahead of time:

 -- The assembly language details presented are not specific to just
    the Pentium architecture.  They are applicable to the 486 and
    to the Pentium II and the Pentium Pro.  Many details also work
    for the earlier Intel architectures.

 -- I'm only presenting a subset of the Pentium instruction set.
    The real instruction set is REALLY large, and contains many
    instructions that no one really uses anymore.  We don't cover
    those "obsolete" instructions.  We also don't cover the
    instructions that only the operating system would use.
 

About the Pentium Architecture
------------------------------

 -- It is not a load/store architecture.

 -- The instruction set is huge!  We go over only a fraction of
    the instruction set.  The text only presents a fraction.

 -- There are lots of restrictions on how instructions/operands are
    put together, but there is also an amazing amount of flexibility.

 Registers
 ---------
   
   The Intel architectures as a set just do not have enough registers
   to satisfy most assembly language programmers.  Still, the processors
   have been around for a LONG time, and they have a sufficient number
   of registers to do whatever is necessary.

   For our (mostly) general purpose use, we get

   32-bit      16-bit    8-bit             8-bit
   (high part of 16) (low part of 16)

    EAX         AX        AH                AL
    EBX         BX        BH                BL
    ECX         CX        CH                CL
    EDX         DX        DH                DL

    and

    EBP         BP
    ESI         SI



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 2 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

    EDI         DI
    ESP         SP

   There are a few more, but we won't use or discuss them.  They
   are only used for memory accessability in the segmented memory
   model.

   Using the registers:
     As an operand, just use the name (upper case and lower case both
     work interchangeably).

     EBP is a frame pointer (see Chapter 11).
     ESP is a stack pointer (see Chapter 11).

   Oddities:
     This is the only architecture that I know of where the programmer
     can designate part of a register as an operand.  On ALL other
     machines, the whole register is designated and used.

   ONE MORE REGISTER:
     Many bits used for controlling the action of the processor and
     setting state are in the register called EFLAGS.  This register
     contains the condition codes:

       OF  Overflow flag
       SF  Sign flag
       ZF  Zero flag
       PF  Parity flag
       CF  Carry flag

     The settings of these flags are checked in conditional control
     instructions.  Many instructions set one or more of the flags.
     (Note that we only utilized SF and ZF in SASM.)

     There are many other bits in the EFLAGS register:  TO BE DISCUSSED
     LATER.

     The use of the EFLAGS register is implied (rather than explicit)
     in instructions.

 Accessing Memory
 ----------------

 There are 2 memory models supported in the Pentium architecture.
 (Actually it is the 486 and more recent models that support 2 models.)

 In both models, memory is accessed using an address.  It is the
 way that addresses are formed (within the processor) that differs
 in the 2 models.

 FLAT MEMORY MODEL

  -- The memory model that we use.  AND, the memory model that every



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 3 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

     other manufactures' processors also use.

  -- 

 SEGMENTED MEMORY MODEL

  -- Different parts of a program are assumed to be in their own,
     set-aside portions of memory.  These portions are called
     segments.

  -- An address is formed from 2 pieces:  a segment location and
     an offset within a segment.

     Note that each of these pieces can be shorter (contain fewer
     bits) than a whole address.  This is much of the reason that
     Intel chose this form of memory model for its earliest
     single-chip processors.

  -- There are segments for:
       
       code
       data
       stack
       other

  -- Which segment something is in can be implied by the memory
     access involved.  An instruction fetch will always be looking
     in the code segment. A push instruction (we'll talk about this
     with chapter 11) always accesses the stack segment. Etc.

 Addressing Modes
 ----------------

 Some would say that the Intel architectures only support 1 addressing
 mode.  It looks (something like) this:

  effective address = base reg + (index reg x scaling factor) + displacement

     where
       base reg is EAX, EBX, ECX, EDX or ESP or EBP
       index reg is EDI or ESI
       scaling factor is 1, 2, 4, or 8

  The syntax of using this (very general) addressing mode will
  vary from system to system.  It depends on the preprocessor
  and the syntax accepted by the assembler.

  For our implementation, an operand within an instruction that
  uses this addressing mode could look like
   [EAX][EDI*2 + 80]

     The effective address calculated with be the contents of
     register EDI multiplied times 2 added to the constant 80,
     added to the contents of register EAX.
  
  There are extremely few times where a high-level language



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 4 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

  compiler can utilize such a complex addressing mode.  It is
  much more likely that simplified versions of this mode
  will be used.

  SOME ADDRESSING MODES

  --  register mode --
    The operand is in a register.  The effective address is the
    register (wierd).  

    Example instruction:

      mov  eax, ecx

      Both operands use register mode.  The contents of register ecx
      is copied to register eax.

  --  immediate mode --
    The operand is in the instruction.  The effective address is within
    the instruction.  

    Example instruction:

      mov  eax, 26

      The second operand uses immediate mode.  Within the instruction
      is the operand. It is copied to register eax.

  --  register direct mode --
    The effective address is in a register.

    Example instruction:

      mov  eax, [esp]

      The second operand uses register direct mode.  The contents of
      register esp is the effective address.  The contents of memory
      at the effective address are copied into register eax.

  --  direct mode --
    The effective address is in the instruction.

    Example instruction:

      mov  eax, var_name

      The second operand uses direct mode.  The instruction contains
      the effective address.  The contents of memory
      at the effective address are copied into register eax.

  --  base displacement mode --
    The effective address is the sum of a constant and the contents
    of a register.

    Example instruction:



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 5 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

      mov  eax, [esp + 4]

      The second operand uses base displacement mode.  The instruction
      contains a constant.  That constant is added to the contents
      of register esp to form an effective address.  The contents
      of memory at the effective address are copied into register eax.

  --  base-indexed mode --  (Intel's name)
    The effective address is the sum of the contents of two registers.

    Example instruction:

      mov  eax, [esp][esi]

      The contents of registers esp and esi are added to form an
      effective address.  The contents of memory at the effective
      address are copied into register eax.

      Note that there are restrictions on the combinations of registers
      that can be used in this addressing mode.

  --  PC relative mode --
    The effective address is the sum of the contents of the PC and
    a constant contained within the instruction.

    Example instruction:

      jmp  a_label

      The contents of the program counter is added to an offset that
      is within the machine code for the instruction.  The resulting
      sum is placed back into the program counter.  Note that from the
      assembly language it is not clear that a PC relative addressing
      mode is used.  It is the assembler that generates the offset
      to place in the instruction.

 Instruction Set
 ----------------

Generalities:
 -- Many (most?) of the instructions have exactly 2 operands.
    If there are 2 operands, then one of them will be required
    to use register mode, and the other will have no restrictions
    on its addressing mode.

 -- There are most often ways of specifying the same instruction
    for 8-, 16-, or 32-bit oeprands.  I left out the 16-bit ones
    to reduce presentation of the instruction set.  Note that
    on a 32-bit machine, with newly written code, the 16-bit form
    will never be used.

Meanings of the operand specifications:
   reg - register mode operand, 32-bit register
   reg8 - register mode operand, 8-bit register
   r/m - general addressing mode, 32-bit
   r/m8 - general addressing mode, 8-bit



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 6 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

   immed - 32-bit immediate is in the instruction
   immed8 - 8-bit immediate is in the instruction
   m - symbol (label) in the instruction is the effective address

   Data Movement
   -------------

      mov   reg, r/m                 ; copy data
     r/m, reg
     reg, immed
     r/m, immed

      movsx reg, r/m8                ; sign extend and copy data

      movzx reg, r/m8                ; zero extend and copy data

      lea   reg, m                   ; get effective address
  (A newer instruction, so its format is much restricted
   over the other ones.)

   EXAMPLES:

   mov EAX, 23  ; places 32-bit 2's complement immediate 23
         ; into register EAX
   movsx ECX, AL  ; sign extends the 8-bit quantity in register
    ; AL to 32 bits, and places it in ECX
   mov [esp], -1  ; places value -1 into memory, address given
    ; by contents of esp
   lea EBX, loop_top ; put the address assigned (by the assembler)
       ; to label loop_top into register EBX

   Integer Arithmetic
   ------------------

      add   reg, r/m                 ; two's complement addition
     r/m, reg
     reg, immed
     r/m, immed

      inc   reg                      ; add 1 to operand
            r/m

      sub   reg, r/m                 ; two's complement subtraction
     r/m, reg
     reg, immed
     r/m, immed

      dec   reg                      ; subtract 1 from operand
            r/m

      neg   r/m                      ; get additive inverse of operand

      mul   eax, r/m                 ; unsigned multiplication
                                     ; edx||eax <- eax * r/m

      imul   r/m                     ; 2's comp. multiplication
                                     ; edx||eax <- eax * r/m
             reg, r/m                ; reg <- reg * r/m



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 7 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

             reg, immed              ; reg <- reg * immed

      div   r/m                      ; unsigned division
         ; does edx||eax / r/m
         ; eax <- quotient
         ; edx <- remainder

      idiv   r/m                     ; 2's complement division
         ; does edx||eax / r/m
         ; eax <- quotient
         ; edx <- remainder

      cmp   reg, r/m                 ; sets EFLAGS based on 
            r/m, immed               ; second operand - first operand
            r/m8, immed8 
            r/m, immed8              ; sign extends immed8 before subtract 

  EXAMPLES:

  neg [eax + 4]    ; takes doubleword at address eax+4
     ;   and finds its additive inverse, then places
     ;   the additive inverse back at that address
     ;   the instruction should probably be
     ;      neg  dword ptr [eax + 4]

  inc ecx          ; adds one to contents of register ecx, and
     ;   result goes back to ecx

   Logical
   -------

      not   r/m                     ; logical not

      and   reg, r/m                ; logical and
            reg8, r/m8
     r/m, reg
            r/m8, reg8
     r/m, immed
     r/m8, immed8

      or    reg, r/m                ; logical or
            reg8, r/m8
     r/m, reg
            r/m8, reg8
     r/m, immed
     r/m8, immed8

      xor   reg, r/m                ; logical exclusive or
            reg8, r/m8
     r/m, reg
            r/m8, reg8
     r/m, immed
     r/m8, immed8

      test  r/m, reg                ; logical and to set EFLAGS
            r/m8, reg8
     r/m, immed



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 8 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

     r/m8, immed8

         EXAMPLES:

  and edx, 00330000h   ; logical and of contents of register
         ;   edx (bitwise) with 0x00330000,
         ;   result goes back to edx

   Floating Point Arithmetic
   -------------------------
   Since the newer architectures have room for floating point
   hardware on chip, Intel defined a simple-to-implement
   extension to the architecture to do floating point arithmetic.
   In their usual zeal, they have included MANY instructions to
   do floating point operations.

   The mechanism is simple.  A set of 8 registers are organized
   and maintained (by hardware) as a stack of floating point
   values.  ST refers to the stack top.  ST(1) refers to the 
   register within the stack that is next to ST.  ST and ST(0)
   are synonyms.

   There are separate instructions to test and compare the values
   of floating point variables.

      finit                         ; initialize the FPU

      fld   m32                     ; load floating point value
            m64 
            ST(i)

      fldz                          ; load floating point value 0.0

      fst   m32                     ; store floating point value
            m64 
            ST(i)

      fstp  m32                     ; store floating point value
            m64                     ;   and pop ST
            ST(i)

      fadd  m32                     ; floating point addition
            m64
            ST, ST(i)
            ST(i), ST

      faddp ST(i), ST               ; floating point addition
                                    ;   and pop ST

            ETC. (see p.201-202)

   I/O



11/02/22 11:34Lecture notes - Chapter 10 - Pentium Architecture

Página 9 de 9http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/Pentium.html

   ---
   The only instructions which actually allow the reading and
   writing of I/O devices are priviledged.  The OS must handle
   these things.  But, in writing programs that do something
   useful, we need input and output.  Therefore, there are some
   simple macros defined to help us do I/O.

   These are used just like instructions.

      put_ch  r/m           ; print character in the least significant
       ;   byte of 32-bit operand

      get_ch  r/m           ; character will be in AL

      put_str m             ; print null terminated string given
       ; by label m

   Control Instructions
   --------------------
   These are the same control instructions that all started with
   the character 'b' in SASM.

      jmp   m               ; unconditional jump
      jg    m               ; jump if greater than 0
      jge   m               ; jump if greater than or equal to 0
      jl    m               ; jump if less than 0
      jle   m               ; jump if less than or equal to 0

      ETC. (see p. 205)


